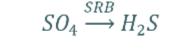


CEA Transportation Connects Alberta Conference

Counteracting Microbial Induced Corrosion - Reed Narrows Bridge


March 4th

Laura Donaldson

Vice President - Transportation Structures

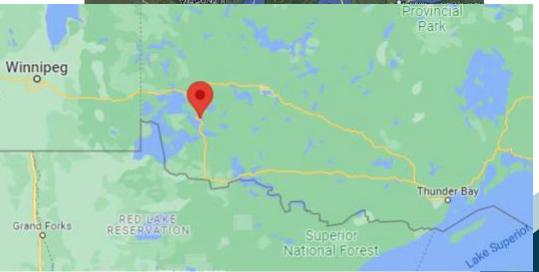
Microbiologically Influenced Corrosion (MIC)

- <u>Definition</u>: "metal deterioration as a result of the metabolic activity of micro- organisms."
- Sulfate-Reducing Bacteria (SRB)
 - Micro-organisms break down organic material
 - Properties between algae and fungi
 - Bacteria doesn't consume the steel, it reduces sulphate to hydrogen sulfate which corrodes the steel
 - Sulfate in water and sediment reacts with SRB

Reed Narrows Bridge

- 165m, 7-span precast concrete girder bridge
- Constructed in 1973
 - Deck and girders in good condition
 - ~30 years of service life remaining

Substructure


- 6 piers (pile bents)
 - 6 unreinforced concrete-filled steel tube piles per pier (36 total)
 - 610 mm outer diameter
 - 12.7 mm design steel wall thickness

Reed Narrows Bridge

- Lake of the Woods, Ontario
 - Massive fresh-water lake with over 100,000 km of • shoreline
- Ontario Ministry of Transportation
 - Highway 71 connects Hwy 11 to Hwy 17 Less than 100 km from Manitoba border
 - •
- Water depth varied from 0.5 2.0m at the piers
- High recreational usage of the watercourse
 - Navigation had to be maintained during • construction
- High fish and fish habitat sensitivity (cool water)

Pipe Pile Condition

• 2018 underwater investigation

- Pile cleaned of algae below water
- Ultrasonic testing (UT) and pit gauge utilized
- Severe MIC identified
 - Band of severe pitting located ~0.5-1.0m below waterline on all piers
 - Average 62% section loss (maximum pitting depth was 86%)
 - Shiny steel pile surface under organic scale

Substructure Evaluation

- Intent was to determine when pile intervention would be required
- Started with 30% section loss, went up 10% increments (40%, 50%, 60%, 70%) until failure

Assumptions

- Fixed piers analyzed (largest reactions)
- Considered only the steel section (no concrete fill)
- Assumed uniform section loss around pile perimeter
- Battered piles resist lateral loads; and therefore, lateral deflections were not sufficient to develop passive resistance along the pile shaft. Thus, soil springs were not used in the analysis.
- As per CHBDC Section 14, ice loading and temperature effects not considered
- Results
 - Pile <u>failure at 70% section loss</u> \rightarrow compared to 62% avg observed in field
 - "Do Nothing" approach would result in 100% section loss in 27 years
 - Pile strengthening required for Bents 1-4
 - Bents 5 &6 had less section loss and could be candidates for encapsulation

Life Cycle Cost – Options Considered

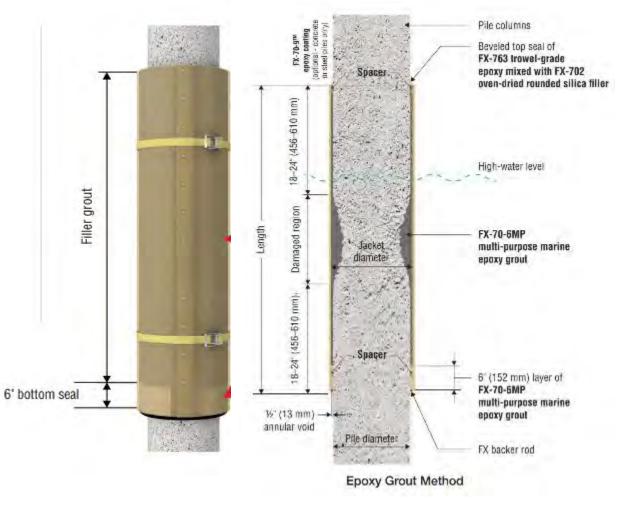
1) Pile encapsulation

- Protect from further corrosion; no additional strength
- Maintain current condition for remainder of service life

2) Pile strengthening

- Protect piles from further corrosion <u>AND</u> increase load carrying capacity
- 3) Full bridge replacement
 - High cost (detour structure required, new in-water substructure)
 - Environmental impacts to fish habitat

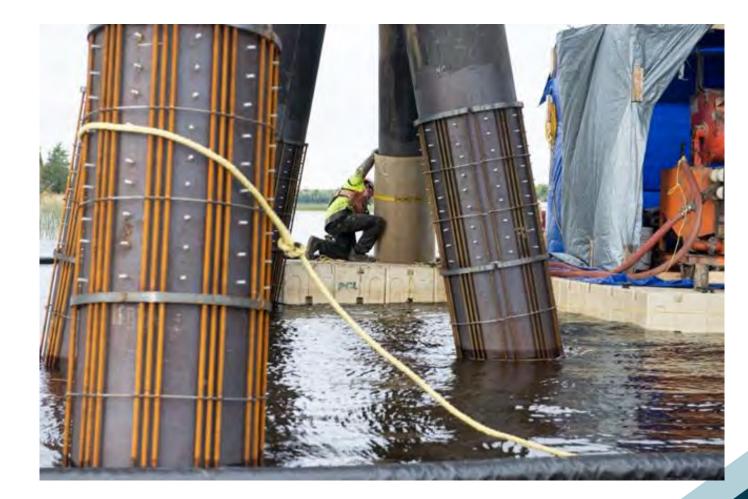
2019 Repair Strategy


- Pile Strengthening of all piles recommended
 - Minimal cost difference between strengthening all vs. select piles
 - True composition of the piles (if concrete filled) is unknown
 - Level of certainty in localized and global section loss

<u>Challenges</u>

- Retrofit completed in wet conditions
 - Cofferdam would be costly due to pile bent configuration
- Qualified divers required for installation
- Equipment sourcing and use
- Short in-water work timing window (July 16th to March 31st)
- Shallow water at end piers

Repair Process



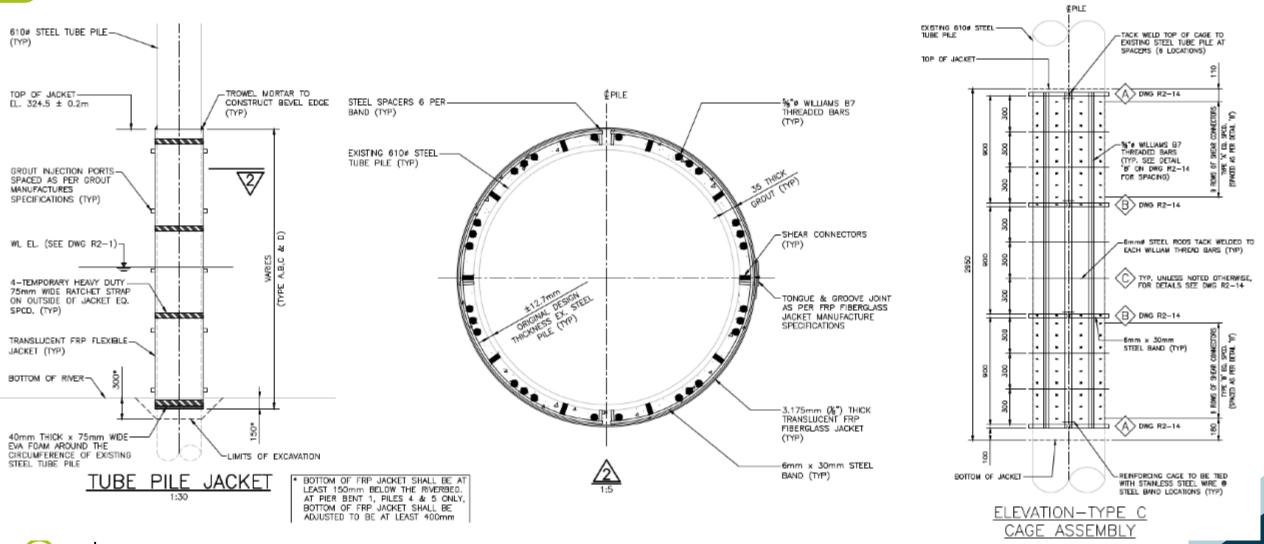
- Manually remove organic scale
- Waterblast pile surface to clean
- Hand excavate bottom of repair area
- Install shear connectors
- Install steel cage assemblies
- Water blast encapsulation area
- Blast clean inside surface of translucent FRP jacket
- Install FRP jacket
- Fill voids with epoxy grout

Repair Design

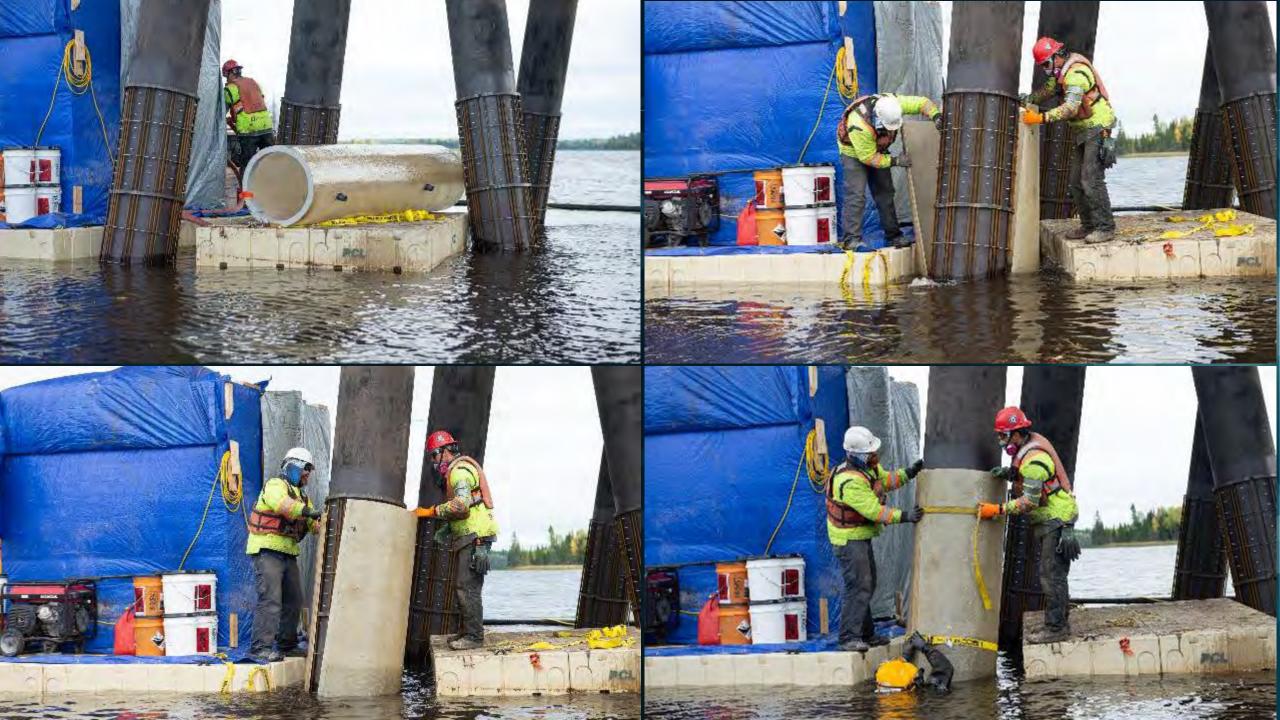
- Mechanical bond shear studs
 - Shear studs installed into solid steel (no section loss)
 - 900 mm attachment zone (top and bottom)
 - 3/8" diameter studs with a length of 1" (25 mm)

- 5/8" diameter threaded bars
 - 3 reinforcing bars at 8 locations

Repair Design


- Fibre-Reinforced Polymer (FRP) Jacket
 - 70 MPa (min.) ultimate tensile strength
 - 3 mm (1/8") thickness, manufactured in 1 piece
 - Extends 150 mm below riverbed for most piles
- Adhesive Bond multi-purpose marine epoxy
 - >60 MPa at 28 days; must be compatible with the FRP

Strengthening Detail


Powder Actuated Tools

- Fasten the shear stud to the pipe pile
 - Stud fully penetrates the steel
 - Metal fuses when the stud enters the steel through the velocity and resulting heat

Summary

- \$6M total rehabilitation cost \rightarrow \$1M for pile repair
- 2 years of construction → pile strengthening completed over 2 weeks in late fall 2019

Future Considerations

> Difficulty sourcing of the shear stud tool and cartridges

Acknowledgements

Ray Krisciunas, P.Eng.

Former MTO Structural Head, MTO Northwest Region

Eric Osvath, P.Eng.

MTO, Structural Engineer, MTO Northwest Region

Dominion Divers

PCL Construction

